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LETTER TO THE EDITOR 

A model for the roughening of reconstructed surfaces: 
finite-size study and phase diagram 
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B International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy 

Received 27 November 1989 

Abstract. We present a novel solid-on-solid model loosely mimicking the structural proper- 
ties of reconstructing F c c ( l l 0 )  solid-vapour interfaces. The model allows for the study 
of the interplay between the reconstruction and roughening phase transitions. A numerical 
finite-size transfer-matrix study of the model yields a phase diagram where roughening 
takes place above reconstruction, confirming the picture advocated by a related study of 
Villain and Vilfan for Au( 110). The nature of both phase transitions is also investigated. 

Recently, there has been considerable theoretical (Jayaprakash and Saam 1984, Tray- 
anov et a1 1989) and experimental interest in the roughening of unreconstructed 
~ c c (  110) metal surfaces, particularly in the cases of Cu (Mochrie 1987, Zeppenfeld 
er a1 1989), Ag (Held er a1 1987) and Pb (Prince et a1 1988, Yang er a1 1989). Less 
effort has been devoted to the problem of roughening in reconstructing noble-metal 
surfaces, e.g. Au (Campuzano et a1 1985, Drube er a1 1989), Ir (Hetterich and Heiland 
1989) and Pt (Salmer6n and Samorjai 1980, Robinson et a1 1989), in particular to the 
question of whether the roughening transition coincides with or follows the order- 
disorder reconstruction transition much studied in these systems. 

Different models have been proposed to date in order to provide a preliminary 
picture for the roughening of reconstructing surfaces. Villain and Vilfan (1988) have 
presented statistics for the defect lines and associated kinks, generated by thermal 
fluctuations within the 1 x 2 ground state configuration of Au( 110). Their analysis 
yields indications for two transitions, both Ising-like, one corresponding to the order- 
disorder reconstruction at T,, the other to the roughening at TR, and with TR- T,= 
100 K in the specific case of Au. The second model, proposed by Levi and Touzani 
(1989), is stated in terms of an anisotropic six-vertex model plus an additional vertex- 
vertex interaction, which is solved numerically for the step free energy in order to 
establish the dependence of the roughening transition temperature on surface energy 
anisotropy. This model has the advantage of treating reconstructing and unreconstruct- 
ing surfaces on the same footing. 

In this letter we study a simplified version of a third model, proposed by two of 
the present authors in order to describe the dependence of both the roughening and 
reconstruction transition temperatures on surface anisotropy, as well as to elucidate 
the nature of the structural phase present below TR. A preliminary analysis of the 
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model (Jug and Tosatti 1989), to be described below, has shown that TR> T,, that 
roughening is of infinite-order (Kosterlitz-Thouless) whilst reconstruction is roughly 
speaking Ising-like, and that between the two transitions a sequence of disordered 
incommensurate phases is present as a precursor to true roughening. Here we present 
alternative results from a finite-size transfer-matrix study indicating that the above 
picture is essentially correct in predicting that TR > T, for all reconstructing surfaces. 
Our analysis also yields the roughening temperature for surfaces that do not reconstruct. 

The model can be written in terms of two sets of compenetrating rectangular lattice 
column heights, { h , }  and {Iq}, each set being defined on the sublattice of one of the 
two inequivalent lattice layers of the semi-infinite FCC( 110) crystal (see figure l ( a ) ) .  
The Hamiltonian (in units of an effective atomic cohesion energy J )  reads: 

%f= a C [(hI]-’I,)(’IJ ~ h l + ~ , ] ~ + ~ f l ] ~ h l + ~ , ] ~ ~ h l + ~ , ] ~ ~ i ~ ~ , ] ~ ~  , 
+ [(hi] - It])( - ht , ]+ ,  ) + ( I ,  - h t , J + l ) ( h i , J + l  - ‘t,]+, )I - P C ( h,  - h l + l , ]  ) 2  

1J I] 

(1) 

where the sums run over the coordinates { t , j }  of a single sublattice and where the 
condition = h, - I, = *1 is imposed for the height differences between nearest- 
neighbour atomic columns. Since the s,,,] can be interpreted as Ising variables, an 
alternative and yet exactly equivalent form for the Hamiltonian is: 

a C ~,,jst+l,j - ( a  - 2 ~ )  C s i , j ~ i + 1 , ,  -C si,js,,j+I (2) xe=- 
I even,] I odd,] ‘ .I  

where the { i , j }  are now sites of the dual lattice of the combined {h}u  (1 )  lattice, and 
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Figure 1. ( a )  Two-sublattice structure of the FCC( 110) surface. Large circles indicate 
h-sublattice sites (empty ones at quote 0, filled ones at quote -2), smaller circles I-sublattice 
sites (all at quote -1); for simplicity, both sublattices are taken as square. In this way, 
the left-hand side represents the ordered 1 x 2 structure, the right-hand side the 1 x 1 
structure. + or - signs refer to nearest-neighbour height differences (‘spins’). ( b )  Spin 
configurations allowed in each elementary plaquette, owing to local height conservation. 
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with the additional constraint that not all spin configurations are allowed owing to 
local height conservation (ice-rule, figure 1( b ) ) :  

s l + l , J + l - s I , J + l + s l . J - s ~ + l , J  (3) 

In terms of ground-state configurations, it is clear that the unreconstructed 1 x 1 surface 
is favoured for K = 4p - 2 a  < 0 (ferromagnetic ‘spin’ ground state), whilst the recon- 
structed 1 x 2 phase occurs for K > O((++--) antiphase spin ground state). Hence, KJ 
can be thought of as proportional to the ( 1  l o ) / (  1 1  1 )  surface energy anisotropy of any 
FCC metal. Notice however that contrary to real pure metal surfaces our Hamiltonian 
( 1 )  contains an asymmetry between the h and 1 sites of the two inequivalent layers. 
Such an asymmetry would be present, for instance, on the surface of an ordered binary 
alloy (e.g. Cu,Au) (Alvarado et a1 1987). On the other hand we expect the essential 
physics of the model to hold also for pure reconstructing metal surfaces. Another way 
to visualise the effects of this asymmetry is to assimilate it to a weak external field 
making the h and I sites slightly inequivalent. We expect such a field to yield at most 
a rounding of some otherwise sharp phase transition. Another subtle feature which is 
realised on real metal surfaces but absent in Hamiltonians ( 1 )  and (2) is the presence 
of so-called ‘deep’ missing row reconstructions, which are replaced in our model by 
‘shallow’ reconstructions. Otherwise, we believe that the main physics of coexisting 
roughening and reconstruction is quite well embodied in this model. For K < O  we 
expect the asymmetry to be unimportant, as there is no degeneracy in the 1 x 1 ground 
state. We emphasise that despite the unrealistic suppression of ground-state degeneracy 
for K > 0, our model represents the first simple S O S  Hamiltonian containing both 
reconstructed and unreconstructed ground states leading, at the same time, to roughen- 
ing at high temperatures. 

We have studied the phase behaviour of the model through the method of finite-size 
scaling (Nightingale 1981, Barber 1983) applied to the exact numerical evaluation of 
thermodynamic surface properties for infinite one-dimensional lattice strips. The 
transfer matrix (Domb 1960) for Hamiltonian (2) (which would be an alternate-coupling 
nearest-neighbour two-dimensional Ising model, were it not for the ice-rule constraint), 
is defined by 

n 

T(n,(j,j+ 1 )  = n ex~(Kij,,j+l~t,j~i,j+I + K y , r + I j ~ , , j ~ , + l . j )  (4) 
t = l  

where n is the finite strip width and K , ,  ‘I are the nearest-neighbour couplings (in units 
of J / k B T )  appropriate for the chosen direction of transfer. In our case, convergence 
for increasing n is faster for a transfer in the diagonal direction and the full transfer 
matrix breaks down in the product of two matrices alternating in the direction of 
transfer due to the alternancy of the interactions. The height conservation constraint 
(3) is imposed in the determination of the matrix elements and eigenvalues. The height 
difference at column j between the two strip edges is given by 

n 

Ahj = ( - l ) i + ’ ~ i , j  
i = l  

so that the height conservation rule (3) automatically implies that A h j = A h j + l  for 
periodic boundary conditions in the direction orthogonal to the transfer. The full 
matrix is consequently of block-diagonal form, each block corresponding to a particular 
height difference (Lieb and Wu 1972, Baxter 1982). Thus, we evaluate the free energy 
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per site from the largest eigenvalue of the central block ( A h  = 0 ) ,  

kB T f ( ~ ,  T) = --ln(Ao) 
2 n  

whilst the free energy per column for step formation corresponds to 

f s ( ~ ,  T ) =  --In - 
k;T (3 (7) 

with A 2  the dominant eigenvalue of the subcentral block ( A h  = 2). The results obtained 
for the heat capacity per site are shown in figure 2 for strips of sizes n =4, 6, 8, 10 as 
a function of temperature for K < 0. Similar results are shown in figure 3 for K > 0, 
although convergence suffers from parity effects owing to the symmetry of the 1 x 2 
ground state. These results give indications reminiscent of rounded 2~ Ising-like 
behaviour for sufficiently small values of I K I .  However, for larger values of I K I  the heat 
capacity appears to be saturating with increasing n, perhaps an indication for the 
drifting of the related critical exponent towards the Kosterlitz-Thouless value --CO. A 
possible explanation stems from the fact that while the energy of stepped defects is 
of order a, that of flat ones is of order I K I .  Hence, for 1 ~ 1 ~  a reconstruction involves 
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Figure 2. Finite-size and temperature dependence of the scaled heat capacity per site for 
unreconstructingsurfaces ( 1  x 1). (. .) n =4; (----) n = 6 ;  (--.--.-) n =8; (-) n = 10. 
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Figure 3. As in figure 2, but for reconstructing surfaces ( 1  x 2). 
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Figure 4. Suggested phase diagram for the present model. The upper curve is the smooth- 
rough transition; the lower curve represents the position of the roughening peak for K < 0, 
and of the Ising-like order-disorder transition for K > 0. 
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mostly in-plane degrees of freedom, whilst for larger I K ~ S  competition with off-plane 
degrees of freedom will modify the nature of the reconstruction transition for K > 0. 
In figure 4 (lower curve) the position of the peak in the heat capacity is drawn as 
function of size n and anisotropy K .  For very small values of I K ( ,  severe finite-size 
effects come into play, as the system becomes strongly quasi-one-dimensional; however 
there is indication that the curves approach the origin with infinite slope. We identify 
the position T, of the heat capacity peak with the order-disorder transition temperature 
for reconstructing surfaces K > 0, transition that appears to be Ising-like for sufficiently 
small anisotropy. For K < 0 the position of the peak (now presumably a precursor to 
anisotropic roughening) is determined with high accuracy for two special points (beside 
K = 0, trivially). For K = -0.4 the position of the peak appears to be independent of 
size n (the finite-size corrections change sign at that point), thus its value is determined 
exactly to numerical precision. For K = -2a, the model becomes exactly isomorphic 
to an anisotropic BCSOS model, for which we know there is no second-order transition 
but instead an infinite-order transition preceded by a non-critical peak in the heat 
capacity, for which the position can be determined exactly. We point out that precisely 
for K = -2a our model recovers symmetry between h and I inequivalent layer sites. 
Through the above exact points a fitting curve has been drawn in figure 4 in order to 
give a possible indication of the convergence of our finite-size evaluation. 

The position of the roughening transition in our model for K = -2a can also be 
determined numerically, by extrapolating the temperature dependence of the step free 
energy f, to n =cc and determining the temperature TR where fs vanishes. Good 
agreement is obtained with the exact result for the BCSOS model, though this method 
is not very precise for determining the roughening temperature (Luck 1981). For 
K > -2a, a faster and more accurate convergence is obtained from the calculation of 
the following approximant to f; 

where A b  represents the subdominant eigenvalue of the central block. g ,  is an 
approximant to f; in that A. becomes degenerate with A b  precisely at TR; however, g, 
becomes negative for T >  TR, thus allowing for a more precise evaluation of TR. The 
resulting curves are given in figure 4 (upper curve), which completes our phase diagram. 
As for the nature of the roughening transition, we point out that our model resembles 
that studied by Knops (1979), in which two anisotropic compenetrating SOS lattices 
are constrained precisely by the same h,, - I C , , ,  = * 1 condition on neighbouring columns. 
Knops proposes that, except for the isotropic case, the transition should be Ising-like. 
Here we see, from heat capacity studies, that by varying K the thermal exponent can 
change almost continually indicating the possible existence of weak universality condi- 
tions (Suzuki 1974). 

In conclusion, we have carried out a finite-size investigation of a model for the 
roughening of reconstructing surfaces. The resulting phase diagram confirms the 
proposal of Villain and Vilfan and of Jug and Tosatti that there should be two separate 
reconstruction and roughening transitions, for all surfaces having a 1 x 2 ground state. 
It is in fact interesting to point out that in a recent x-ray scattering experiment on 
Pt( 110) (Robinson et a1 1989) new evidence has been presented for an intermediate 
incommensurate phase (corresponding to a temperature-dependent shift of the diffrac- 
tion peak) between T, and (presumably) TR. We hope that our model and findings 
will therefore stimulate further theoretical and numerical studies on the problem. 
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